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The design of ion drivers for warm dense matter and high energy density physics applications and heavy 

ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on 

the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background 

plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its 

current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular 

practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In 

the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 

G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved 

transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial 

electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, 

whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional 

transverse focusing can be applied. For instance, in the Neutralized Drift Compression Experiments (NDCX) a 

strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight 

final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) 

magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the 

preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron 

dynamics strongly affected by a weak applied magnetic field. 

 
I. INTRODUCTION 

The high efficiency of energy delivery and deposition makes intense ion beam pulses 

particularly attractive for high energy density physics applications, and recent advances in ion 

accelerators and focusing systems have made possible the production of high energy density 

conditions and warm dense matter (WDM) phenomena under controlled laboratory conditions 

[1-5]. For instance, WDM density-temperature regimes similar to the interiors of giant planets 

and low-mass stars are accessible in compact beam-driven experiments [1-2]. Furthermore, in 

addition to fundamental physics applications, the use of intense heavy ion beams for  
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compression and heating of a target fuel is a promising approach to inertial confinement fusion 

energy applications [1-5].  

An intense high energy ion beam is produced and delivered to the target by an ion driver, 

as shown in the schematic in Fig.1. Leaving the ion source, an ion beam pulse is matched into 

the accelerator region, where the directed kinetic energy of the beam ions is significantly 

increased. The transverse confinement of the ion beam in the accelerator section against strong 

space-charge forces is typically provided by a periodic focusing lattice consisting of quadrupole 

or solenoidal focusing magnetic or electrostatic lenses. In order to increase the intensity of the 

long ion beam pulse, temporal and spatial compression occurs in the subsequent compression 

section. For this purpose, leaving the acceleration section, the radially convergent ion beam pulse 

acquires a head-to-tail velocity tilt and propagates through a long drift section filled with a dense 

background plasma, which charge neutralizes the ion charge bunch, and hence facilitates 

compression of the charge bunch against strong space-charge forces. Finally, additional focusing is 

provided in the final focus section, and then the compressed ion bunch deposits its energy into 

the target.  

Although a full-scale heavy ion fusion test facility with high-gain target physics is presently 

in a design stage, a compact heavy ion driver for warm dense matter experiments (NDCX-I) was 

built at the Lawrence Berkeley National Laboratory [6-7]. In this ion-beam-driven experiment a 

~300keV Potassium (K+) ion beam pulse undergoes simultaneous (~50X longitudinal, and ~10X) 

radial compression, and deposits its energy within ~2.5 ns in ~1.5 mm focal spot, carrying a current 

of ~1.5 A [6]. While a target temperature of only 0.2 eV - 0.5 eV is expected to be achieved on the 

NDCX-I facility, its planned upgrade (NDCX-II) will operate at higher beam energies (~2 MeV Li+ 

ions), and will allow for target heating up to 1-2 eV by delivering a ~1 ns compressed bunch carrying 

a current of ~30A [8].  

The control over the transverse beam envelope during its neutralized drift compression and 

subsequent final focusing is of particular importance for the driver performance.  In the present work 

we discuss the possibility of improving the beam pulse transverse transport properties using weak 
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FIG. 1. Block diagram of an ion driver for ion-beam-driven warm dense matter and high energy density 

physics applications, and inertial confinement fusion. 
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solenoidal magnetic fields, and analyze the results for the parameters characteristic of the 

Neutralizing Drift Compression Experiment (NDCX-I) and its planned upgrade (NDCX-II). 

 

Enhanced Self-Focusing of an Ion Beam Pulse Propagating through a Background Plasma 

along a Solenoidal Magnetic Field  

Typically, as the long ion beam pulse propagates through the neutralized drift section, its 

charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is 

produced. The effects of self-pinching become most pronounced when the beam radius is small 

compared to the collisionless plasma electron skin depth, rb<c/ωpe [9]. In this case the beam 

current is almost unneutralized, and the self-magnetic field is a maximum. Here, ωpe is the 

electron plasma frequency, and c is the speed of light in vacuo. The self-pinching effect is of 

particular practical importance, and is used in various ion driver designs in order to control the 

transverse beam envelope [10-13]. In particular, in order to reduce the size and cost of the final 

focusing system as well as to relax the constraint on momentum spread in the accelerator system, 

it has been proposed to remove the strong transverse focusing upstream of the compression 

section, and then let the beam propagate through a neutralized compression section as a magnetic 

self-pinch [10].  

The idea of utilizing self-pinch transport in a driver design can become even more 

attractive in view of recent findings [14-15] demonstrating that for an ion beam with rb<c/ωpe the 

self-focusing force can be significantly enhanced if a moderately weak solenoidal field satisfying  

   pebce ωβω >>                                                                   (1) 

is applied along the beam propagation direction. Here, ωce is the electron cyclotron frequency and 

βb=Vb/c is the ion normalized ion beam velocity. The threshold value of the magnetic field in the 

inequality (1) can be expressed as [ ]( ) kGcmnB pbc
21113 10−= β , corresponding to a relatively weak 

magnetic field of order 50G for ion beams with βb~0.05 propagating through a background plasma 

with density np~1011 cm-3. It is important to note that in contrast to magnetic self-pinching, the 

enhanced collective self-focusing has a dominating radial self-electric field component and 

occurs as a result of the overcompensation of the beam charge by the plasma electrons, whereas 

the beam current becomes well-neutralized [14-15].  

Finally, we note that the fringe fields of the strong final focus magnetic solenoid can 

penetrate deeply into the drift section providing conditions for the enhanced self-focusing to 
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occur. This can significantly influence the neutralized ion beam transport, making studies of the 

enhanced self-focusing effects in the presence of weak solenoidal magnetic fields of particular 

practical importance. In particular, for the design parameters of the NDCX-II experiment the 

effect of the plasma-induced self-focusing provided by the magnetic fringe fields penetrating 

inside the drift section can become comparable to the focusing effect of the strong final focus 

solenoid [14-15]. 

In the present work (Sec. II), we (a) provide a detailed discussion of this enhanced self-

focusing phenomenon; (b) determine the self-consistent evolution of the transverse beam pulse 

envelope for the case of a parabolic radial beam density profile; (c) assess the influence of the 

background plasma electron thermal effects on the beam self-focusing; and finally, (d) discuss 

the feasibility of describing the enhanced self-focusing within the electrostatic approximation, 

which is often used in numerical codes for ion beam transport simulations. 

  

Collective focusing lens for the beam final focus 

Typically, in order to provide final transverse beam focusing, a strong (several Tesla) 

magnetic solenoid placed downstream of the drift section is involved in the design of an ion 

driver (e.g., NDCX-I and NDCX-II). Due to the strong space-charge self-fields of an intense ion 

beam pulse, a neutralizing plasma is required inside the magnetic solenoid. Note that apart from 

the challenge of using a several Tesla magnetic solenoid, filling it with a background plasma 

provides additional technical challenges [16]. However, the technical realization of the final 

beam focus can be significantly simplified if the collective focusing scheme (hereafter referred to 

as a collective focusing lens) is used [17, 18]. In particular, a much weaker magnetic field 

(several hundred Gauss) would be required to achieve the same final focal length.  

In the collective focusing scheme originally proposed and experimentally tested by 

Robertson [19-20], an ion beam pulse enters a magnetic lens carrying an equal amount of co-

moving neutralizing electrons. Note that in contrast to conventional neutralized magnetic 

focusing, no preformed plasma is required, and in fact should not be present inside the lens [21]. 

Due to the collective electron dynamics inside the lens, a strong ambipolar radial electric field 

develops that provides a focusing force acting on the beam ions, which is substantially larger 

than the magnetic V×B focusing force. As a result, the focusing strength of the lens is 

significantly enhanced, and for a given magnetic field, the focal length of the collective focusing 
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lens is a factor of mi/me smaller than the focal length of the conventional magnetic lens. Here, me 

is the electron mass, and mi is the mass of the beam ions. 

The feasibility of using a collective focusing lens for final beam focusing has been 

recently demonstrated in numerical simulations showing that a tight final focus in the NDCX-I 

experiments can be achieved by using a several hundred Gauss  magnetic lens (instead of 

presently used 8 T solenoid) [17-18]. Note that the NDCX-I configuration conveniently allows 

the ion beam pulse to extract neutralizing electron background from the plasma that fills the 

magnetic-field-free drift section.  

In the present work (Sec. III), we discuss details and limitations of the collective focusing 

scheme, and present the results of advanced numerical simulations demonstrating the feasibility 

of the tight final beam focusing for the parameters of the NDCX-II experiment.  

 The present paper is organized as follows. The enhanced self-focusing of an ion beam 

pulse propagating through a background plasma along a solenoidal magnetic field is discussed in 

Sec. II. Section III presents the analysis of the collective focusing lens, in which an ion beam 

pulse enters a magnetic lens carrying an equal amount of co-moving neutralizing electrons.  The 

focusing effects described in Sec. II and Sec. III are compared in Sec. IV. Finally, the 

conclusions of the present work are summarized in Sec. V. 

 
II. ENHANCED SELF-FOCUSING OF AN ION BEAM PROPAGAITING THROUGH A 

MAGNETIZED PLASMA  

In this section we consider an ion beam pulse propagating through a pre-formed dense 

neutralizing plasma along a solenoidal magnetic field. The significant difference from the 

“unmagnetized case” with no applied magnetic field is that a small radial displacement, rδ , of a 

background plasma electron is now accompanied by a strong azimuthal rotation of the electron 

around the beam axis. Indeed, due to the conservation of canonical angular momentum for the 

case of an azimuthally symmetric ion beam, variations of magnetic flux through the electron 

orbit set up a large kinetic component of the canonical angular momentum, i.e., the electrons 

start to rotate about the beam axis (axis of symmetry of the beam-plasma system) with a high 

azimuthal velocity Veφ (Fig. 2). Because the ze BV ×ϕ  force should be mostly balanced by a radial 

self-electric field, the electron rotation results in a polarization of the plasma and produces a 

much larger self-electric field than in the limit with no applied field [14-15, 22-23]. 
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It has been also found that the properties of the background plasma response are 

significantly different depending on whether the value of the solenoidal magnetic field is below 

or above the threshold value specified by peb
cr
ce ωβω 2= . The paramagnetic plasma response and 

the defocusing effect of a radial self-electric field, generated due to a local polarization of the 

magnetized plasma background, have been demonstrated for the case where pebce ωβω 2<  [22]. 

In contrast, for the case where pebce ωβω 2> , the plasma response is diamagnetic, and the radial 

self-electric field is focusing [14-15].  

A plausible heuristic description of qualitatively different regimes of ion beam interaction 

with the background plasma can be given, based on the analysis of the balance between the 

electric and magnetic forces acting on a rotating background plasma electron [Fig. 2]. Figure 2(a) 

shows the case of under-neutralized beam space-charge corresponding to 2ce b peω β ω< . In this 

regime the net positive charge of the ion beam attracts a plasma electron, i.e., 0<rδ . Due to 

conservation of canonical angular momentum, a decrease in the magnetic flux through the 

electron orbit provides electron angular rotation in the negative azimuthal direction, 0<ϕeV . As 

a result, the radial component of the magnetic force acting on the electron is positive, 

00 >−= cVeBf eM ϕ ,  and is balanced by the positive (defocusing) radial component of the 

(a) (b) 

FIG. 2. Two different regimes of ion beam interaction with a background plasma. (a) Corresponds to 

ωce<2βbωpe; the beam charge is under-neutralized, the radial self-electric field is defocusing, Er>0, and 

the plasma response is paramagnetic, δBz>0. (b) Corresponds to ωce>2βbωpe; the beam charge is over-

neutralized, the radial self-electric field is focusing, Er<0, and the plasma response is diamagnetic, δBz<0.  

The blue curves illustrate the trajectory of a background plasma electron; the double-dashed lines 

illustrate the outline of the ion charge bunch; and rE eEf −=  and ( ) 0BVcef eM ϕ−= .   
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electric field, 0>rE . Note that the positive azimuthal component of the electron current, 

0>−= ϕϕ eee Venj , produces a positive (paramagnetic) perturbation of the longitudinal magnetic 

field, 0>zBδ . In contrast, for the case where the beam space charge is over-neutralized [Fig. 

2(b)] a plasma electron moves radially outward as the ion beam approaches, i.e., 0>rδ , and an 

increase in the magnetic flux is associated with the positive azimuthal component of the electron 

velocity, 0>ϕeV . This leads to a diamagnetic effect, 0<zBδ , and also a focusing self-electric 

field, 0<rE , is generated to provide force balance on the plasma electrons. The enhanced self-

focusing force provided by this strong radial electric is calculated in the following section (Sec. 

II A).   

It is interesting to note that the qualitatively different local plasma responses are 

separated by the critical value of magnetic field, specified by cr
cece ωω = , which corresponds to the 

resonant excitation of large-amplitude wave-field perturbations (whistler waves) [15, 24]. The 

excited wave-field perturbations propagate oblique to the beam with characteristic longitudinal 

wave number 1~ −
bz lk , where lb is the characteristic beam length. Therefore, their contribution to 

the total Lorentz force can have opposite signs for the beam head and the beam tail, leading to 

the distortion of the beam pulse shape. However, for a long beam pulse with lb>>max{rb, 

Vb/ωpe}, it has been demonstrated for the case where pebce ωβω 2>>  and the beam radius is not 

too small, ( ) cepecebb Vr ωωω
21221+>> , the radial focusing force provided by wave-field 

perturbations, which extend far outside the beam, become negligible compared to the focusing 

force provided by the local plasma polarization [15]. Finally, note that no whistler wave-field 

perturbations are excited for the case where pebce ωβω 2<  [15, 21-22]. 

 

A. Radial focusing force calculation 

In order to analyze the self-focusing effect quantitatively, we now derive a general 

expression for the radial component of the Lorentz force [14],  

                                                                 ( )r b r bF Z e E Bϕβ= − ,                                                   (2)       

acting on the ion beam pulse propagating through a background plasma along a uniform 

magnetic field B0=B0z. Here, Bφ and Er are the azimuthal component of the magnetic field, and 
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the radial component of the electric field, respectively; and Zb is the charge state of the beam 

ions. For simplicity, we assume immobile plasma ions, ballistic (infinitely heavy) beam ions, 

cold plasma electrons and investigate the axisymsetric steady-state solution where all quantities 

depends on t and z solely through the combination ztVb −=ξ . Assuming that the beam density 

is small compared to the electron density (nb<<ne), we solve for the linear plasma response, in 

which the plasma electron dynamics is governed to leading order in the cold-plasma 

approximation by  

                                                        [ ] EBV
V

0e
e e

c
eVm be +×=

∂

∂

ξ
.                                               (3) 

Here, Ve is the electron flow velocity and we have made use of zVt b ∂∂−=∂∂  for the steady-

state response in the beam frame. Applying the curl operator to the both sides of Eq. (3) and 

making use of Faraday law, we readily obtain   

                                                [ ]0ee BVBV ××∇=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×∇

∂

∂

c
e

cm
eVm
e

be ξ
.                               (4)  

Combining the ϕ-component of Eq. (4) with the r-component of Eq. (3) yields [14] 

                                               
r
V

VmZBV
c
eZ

eEZF ez
bebb

b
rbr ∂

∂
=−= ϕ .                                        (5) 

 For a long ion beam pulse with rb<<lb and ωpelb/Vb>>1 it was first demonstrated by 

making use of the slice approximation [14], and then confirmed in a more detailed analysis 

accounting for the effects of coupling between the longitudinal and transverse dynamics [15] that 

for the case where the beam radius is greater than the effective electron gyroradius, rge, i.e., 

                                                      ( ) 21221 pece
ce

b
geb

V
rr ωω

ω
+≡>> ,                                               (6)  

the beam current becomes fully-neutralized, i.e., e ez b b bn V Z n V= . For this case it readily follows 

from Eq. (5) that the radial focusing force is given in the linear approximation, i.e., nb<< ne, by  

                                                         
r
n

n
VmZF b

e
bebr ∂

∂
=

122 .
                                                          

(7)
 

It is straightforward to show that the ratio of the collective self-focusing force in the 

presence of an applied magnetic field [Eq. (7)] to the self-pinching force, F0, occurring for B0=0  
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can be estimated for the case where the magnetic self-pinching force  is maximum, i.e. 

rb<<c/ωpe, as [14-15]  

                                                          ( )20 ~ 1r b peF F c rω >> .                                                     (8) 

Note that for the case where ce b peω β ω>>  the condition in Eq. (6) can be satisfied even in the 

limit rb<<c/ωpe. Figure 3 shows the results of illustrative electromagnetic particle-in-cell 

simulation demonstrating a significant increase in the self-focusing force in the presence of a 

weak magnetic field. Note that excellent agreement with the theoretical predictions in Eq. (7) is 

obtained.  

Finally, we emphasize again that for the case where the conditions for enhanced focusing 

to occur are satisfied [Eqs. (1) and (6)] the beam current becomes well-neutralized, leading to 

Bφ≈0, and therefore the dominant contribution to the self-focusing force in Eq. (7) comes from 

the radial self-electric field. For instance, for the parameters of the numerical simulation shown 

FIG. 3. (Color online) Radial dependence of the normalized focusing force at the beam center [13]. The 

results of the numerical simulations correspond to B0=300 G and ωce/βbωpe=18.7 (blue circles), and  ωce=0 

(green diamonds). The analytical results in Eq. (7), are shown by the solid pink curve. The beam 

parameters correspond to Zb=1, rb=0.55c/ωpe, lb=1.875c/ωpe, βb=0.05, and the plasma density is taken to 

be np=1010 cm-3. The dashed black curve corresponds to the radial beam density profile, 

( )[ ]2222exp14.0 bbbpb ltVzrrnn −−−= .  Results are obtained using the cylindrical (r,z) version of 

the LSP code [24]. 
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in Fig. (3), the contribution of the electric component to the total Lorentz force  constitutes more 

than 99%. 

 

B. Self-consistent analysis of the transverse beam focusing  

It is of particular practical importance to investigate the self-consistent evolution of the 

ion beam radial density profile under the influence of the radial self-focusing force described by 

Eq. (7). As an illustrative example, we present here a self-consistent analytic solution describing 

the transverse beam focusing for the case of a cold ion beam with a parabolic density profile.  

 Assuming azimuthal symmetry, the transverse dynamics of a long ion beam pulse is 

governed by 

                                                               ( ) 01
=

∂

∂
+

∂

∂
rrnV

rrt
n ,                                                     (9) 

                                                               
r
n

r
VV

t
V r

r
r

∂

∂
=

∂

∂
+

∂

∂
α ,                                                  (10)  

where n(r,t) is the ion beam density, Vr(r,t) is the radial component of the ion fluid velocity, 

( )pbbeb nmVmZ 22=α , mb is the mass of the beam ions, ne is the background electron density, and 

we have neglected the terms involving the longitudinal derivatives, ∂/∂z≈0.  For the case of a 

parabolic density profile, it is straightforward to show that  

                                                   ( )
( )

( ) ( )
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

,,0

,,1
,

2

2

2

2
0

0

tRr

tRr
tR

r
tR

R
tn

trn

b

b
bb

b
b

                          (11) 

and  

                                                                 ( ) ( )
( )tR
rtUtrV
b

r −=, ,                                                 (12) 

where Rb0 and n0 describe the initial beam radius and the on-axis number density, respectively. 

Equations (11) and (12) constitute solutions to Eqs. (9) and (10), provided the time-dependent 

functions Rb(t) and U(t) satisfy 

                                                                      ( )tU
dt
dRb −= ,                                                         (13)   

and 
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( )tR

R
n

dt
dU

b

b
b 2

2
0

02α= .                                                  (14) 

Assuming there is no initial convergence, i.e., U(t=0)=0, it follows that the evolution of the beam 

radius, Rb(t), is given by 

                                                            ( ) 2
2
0

0
0 21 t

R
n

RtR
b

b
bb

α
−= .                                              (15) 

From Eq. (15) it follows for the case where the conditions for the enhanced focusing to occur 

[see Sec. II A] are satisfied that an ion beam pulse with a parabolic density profile propagating 

through a dense background plasma along a magnetic field will come to a radial focus at  

                                                               
0

0

2 be

eb

b

b
f nm

nm
Z
R

L = .                                                   (16) 

 

C. Thermal effects of the background plasma electrons   

In previous sections the ion beam self-focusing has been analyzed, assuming cold 

neutralizing background. Here, we investigate the influence of the plasma electron thermal 

effects on the beam self-focusing. It is important to note that apart from the heating produced 

inside the plasma source, significant additional electron heating may be provided by the ion 

beam pulse as a result of collective (beam-plasma) streaming instabilities [26-28].  

Assuming, for simplicity, a scalar form of the electron pressure, pe=neTe, the radial 

component of the electron force balance equation [Eq. (3)] is given in the linear approximation, 

nb << ne,  by 

                                   
r
p

n
eEBV

c
e

z
V

Vm e

e
re

e
be ∂

∂
++=

∂

∂ 1
0ϕ .                                           (17) 

The effects of electron pressure become important for the case where ∂pe/∂r ~ neeEr. Making use 

of Eq. (7) to estimate the radial electric field and assuming that ∂pe/∂r ~Te∂ne/∂r, it follows that 

the electron thermal effects become pronounced for the case where the electron temperature 

reaches the characteristic value, Tec, given by  

                                                           
r
n

VmZ
r
n

T b
beb

e
ec ∂

∂

∂

∂ 2~ .                                                    (18) 
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Estimating the variations in the electron density, δne=ne-np, for the case of a long ion beam pulse 

from r-1∂(rEr)/∂r≈4πe(Zbnb-δne), where np is the unperturbed uniform background plasma density 

and Eq. (7) is used to determine the radial electric field, it follows that 

                                                            
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂

∂

∂

∂
22

2

1~
bpe

bb
b

e

r
V

r
n

Z
r
n

ω
,                                              (19) 

Note that the ratio 222
bpeb rV ω  determines the degree of the ion beam charge overcompensation by 

the neutralizing plasma background [23]. Finally, making use of Eqs. (18)-(19), it readily follows 

that  

                                                          ( ) 12222 1~ −
+ bpebbeec rVVmT ω .                                           (20)  

FIG. 4. (Color online) Influence of plasma electron thermal effects on the transverse beam self-focusing. 

Shown are plots of the transverse self-electric field corresponding to (a) Te=0eV, (b) Te=300eV, (c) 

T=600eV, and (d) Te=1000eV. The beam parameters correspond to Zb=1, rb=0.55c/ωpe, lb=1.875c/ωpe, 

βb=0.05, the plasma density is np=1010 cm-3, and the applied magnetic field corresponds to B0=300 G. The 

black curve corresponds to the radial beam density profile, ( )[ ]2222exp13.0 bbbpb ltVzrrnn −−−= .  The 

characteristic value of the electron temperature given by Eq. (20) corresponds to Tec=488 eV. Results are 

obtained using the slab (x,z) version of the LSP code [24]. 

 

(a) (b) 

(c) (d) 
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As the electron temperature increases, one should expect to observe a decrease in the 

enhanced self-focusing force. Indeed, the strong radial electric field that constitutes most of the 

focusing is generated to balance the magnetic Veφ×B0 force acting on the azimuthally rotating 

electrons (Sec. II A). However, in the presence of the electron thermal pressure part of the 

magnetic force is balanced by the pressure force, therefore requiring a weaker radial electric field 

to provide radial electron force balance. 

The influence of the electron thermal effects on the radial focusing electric field have 

been studied with the LSP particle-in-cell (PIC) code [25], and the results of the illustrative 

simulation are shown in Fig. 4. It is readily seen that an increase in the electron temperature 

leads to a decrease in the focusing electric field, and the characteristic value of the electron 

temperature for which thermal effects become pronounced is in good agreement with the 

estimate in Eq. (20).  

 

D. Electrostatic model of the enhanced self-focusing 

The results discussed in the previous sections [e.g., Eqs. (6) and (7)] have been obtained 

in Refs. [14, 15] by taking into account electromagnetic effects in describing the dynamics of 

background plasma electrons. It is however interesting to note that the self-focusing force 

specified by Eq. (7) can be obtained within an electrostatic model provided the condition in Eq. 

(6) is satisfied. The electrostatic approximation is often used in numerical codes for simulations 

of a heavy ion driver (e.g., the electrostatic version of the WARP code [29]), and therefore this 

result can be of particular practical importance. 

 As in previous sections, we consider here immobile plasma ions, cold background plasma 

electrons, and assume a linear electron response, which is valid provided eb nn << . The 

axisymmetric steady-state solution where all quantities depends solely on the combination 

tVz b−=ξ  is described in the electrostatic approximation by the cold-fluid equations for 

electrons 

01
=

∂

∂
+

∂

∂
+

∂

∂
− ezperpeb VnrV

rr
nnV

ξ
δ

ξ
,                                  (21) 

0BV
c
eV

Vm er
e

be =
∂

∂
−

ξ
ϕ ,                                                 (22) 
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0V BV
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r
e

V
m e

er
be ϕ

ϕ
ξ

−
∂

∂
=

∂

∂
− ,                                          (23) 

ξ
ϕ

ξ ∂

∂
=

∂

∂
− e

V
Vm ze
be ,                                                      (24) 

and Poisson’s equation for the electrostatic field, ϕ−∇=E   

( )ebb nnZe
r

r
rr

δπϕϕ
ξ

−−=⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
+

∂

∂ 41
2

2

.                           (25) 

Here, pee nnn −=δ , where pn  is the unperturbed plasma density outside from the beam, and we 

have made use of ξ∂∂−=∂∂ bVt  and ξ∂∂=∂∂ z  for the steady-state electron response. 

Finally, note that in the linear approximation, the magnetic BVe × force corresponding to the 

magnetic field perturbations is of second order in nb/ne, and therefore does not appear in Eqs. 

(22)-(23).  

 From Eqs. (22)-(23) it follows that  

02

2
21 BV

c
e

r
eVVm eebe

ce
ϕϕ ϕ

ξω
−

∂

∂
=

∂
∂ .                                  (26) 

Assuming that the ion beam pulse is sufficiently long with cebb Vl ω>> , we readily obtain  

ϕϕ rB
cVe ∂

∂
=

0

,                                                    (27) 

and  

                                               ϕ
ξω rB

cV
V

ce

b
er ∂

∂

∂

∂
−=

0

.                                                (28) 

Combining Eqs. (28), (24) and (21) yields  
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Making use of Poisson’s equation (25) and assuming 22222 1~ bpeb vl ωξ <<∂∂  we obtain 

bb
b

pe

ce

pe enZ
Vr

r
rr

πϕ
ω

ϕ
ω

ω
411 2

2

2

2

−=+⎟
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⎞
⎜
⎝

⎛
∂

∂

∂

∂
⎟
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⎞
⎜
⎜
⎝

⎛
+ .                               (30) 

It now follows from Eq. (30) for the case where ( )( ) 21221 pececebge Vrr ωωω +≡>>  that  
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p

b
beb n
n

VmZe 2−=ϕ ,                                                    (31) 

and we readily obtain the electrostatic radial focusing force, reZF b
el
sf ∂∂−= ϕ , consistent with 

the results of the general analysis [see Eq. (7)]. 

It should be noted, however, that the analysis presented in this section only demonstrates 

that in the limit gerr >>  the electrostatic model predicts the same electric field as that obtained 

in the generalized analysis for the case where ωce>>2βbωpe and r>>rge [14, 15]. Additional 

analysis has to be performed in order to determine the regime of validity of the electrostatic 

approximation. It should be noted that for the case where ωce<2βbωpe the return electron current 

is driven primarily by the inductive electric field [22, 23]; and for the case where ωce≈2βbωpe 

large-amplitude electromagnetic wave fields can be excited [15, 24]. These effects are not 

described by the electrostatic model. We emphasize here that electrostatic numerical codes are 

often used for simulations of an ion driver, and it is therefore of particular practical importance 

to identify the conditions where the electrostatic modeling can adequately describe the ion beam 

dynamics inside the neutralized drift section. This will be a subject of future studies.  

 

III. COLLECTIVE FOCUSING LENS FOR THE BEAM FINAL FOCUS 

In the previous section it was shown that even a weak solenoidal magnetic field of order 

100 G can have a significant influence on the dynamics of an intense ion beam pulse propagating 

through a neutralizing background plasma. In particular, analytical calculations and numerical 

simulations demonstrated enhanced ion beam self-focusing induced by the collective dynamics 

of the plasma electrons. However, it should also be pointed out that the collective effects of a 

neutralizing electron background in a weak solenoidal magnetic field were also utilized in a 

magnetic focusing scheme proposed by S. Robertson a few decades ago [19]. In this section we 

review this focusing scheme, discuss extension of the original theoretical model [17], and finally, 

asses the possibility of its implementation for final focusing of intense ion beams in the 

Neutralizing Drift Compression Experiment-II (NDCX-II).  

 

A. Collective focusing lens  

In the collective focusing scheme proposed and experimentally tested by Robertson [19], 

an ion beam pulse enters a magnetic lens carrying an equal amount of co-moving neutralizing 
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electrons. The neutralizing electrons entering the lens experience much stronger magnetic 

focusing than the beam ions and tend to build up a negative charge around the lens axis. As a 

result, an electrostatic ambipolar electric field develops that significantly increases the total 

focusing force acting on the beam ions.  

The collective focusing force acting on the beam ions can be calculated as follows [17, 

19]. We consider a neutralized ion beam pulse moving from a region of a zero magnetic field 

into a solenoidal magnetic lens. As the charge particles traverse the field fall-off region, where 

the magnetic field has a non-zero radial component they acquire angular rotation around the lens 

axis. From conservation of canonical radial momentum it then follows that inside the lens the 

species azimuthal velocity is given by 2αα
θ
α Ω= rV . Here, the subscripts α=e,i denote electrons 

or ions, respectively, rα is the radial coordinate of a particle of species α, and cmBq ααα 0=Ω , 

where B0 is the magnetic field inside the lens, and qα and mα are the species charge and mass, 

respectively.  It is then straightforward to show that the evolution of a particle’s radial coordinate 

inside the lens is governed by 

0
4
1 2

2

2

=−Ω+ rEm
qrr

dt
d

α

α
ααα .                                            (32) 

In the original derivation for the case of a quasi-neutral ion beam focusing [19], identical radial 

motion of the electrons and the ions was assumed, i.e., ),(),( tzrtzr ie = , which yields in the limit 

me<<mi  

                                                            0
4
1

2

2

=ΩΩ+ iebrZr
dt
d

αα ,                                               (33)   

and the strong ambipolar electric field that provides the enhanced collective focusing is given by 

                                                              
e
rmE eer 4

2Ω−= .                                                           (34)    

Here, Zb=qi/e denotes the ion charge state. It is important to note that the electric field in Eq. (34) 

is generated to balance the magnetic 0BVe ×
θ

 force and the centrifugal force acting on 

neutralizing electrons inside the lens. It therefore follows that in order for collective focusing to 

occur, no pre-formed neutralizing plasma or secondary electrons should be present inside the 

lens. Otherwise, the rotating electrons co-moving with the ion beam will be rapidly replaced by 
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the “non-rotating” background plasma (or secondary) electrons inside the lens, and the enhanced 

collective focusing will be suppressed [21].  

From Eq. (34) it follows that the focal length of a collective lens in the thin lens limit, i.e., 

for the case where the radial displacement of the beam particles within the lens is small, is given 

by  

                                                           ( )siebb
coll
f LVZL ΩΩ≅ − 214 ,                                               (35) 

where Ls is the lens length. Note that the focal length of a “conventional” magnetic lens is given 

in the thin-lens approximation for a single-species ion beam by 

( )sib
m
f LVL 224 Ω≅ .                                                     (36) 

Equation (36) follows from Eq. (32), assuming that 0≅rE , provided the beam space-charge is 

weak or well-neutralized by a preformed background plasma. Comparing Eqs. (35) and (36) it 

follows that for a given focal length, the magnetic field required for the collective focusing is 

smaller by a factor of ei mm . 

 In the derivation of Eqs. (33)-(34) it has been assumed that (a) the collective focusing is 

quasi-neutral, and (b) the magnetic field perturbations, which are mainly created by the 

azimuthal electron current, are small. It is straightforward to show that the quasi-neutrality is 

maintained provided the electron beam is sufficiently dense that [17, 19]  

                                                                  
22

2
1

epe Ω>>ω ,                                                              (37)  
 

and the magnetic perturbations are small provided the beam radius is small compared to the 

collisionless electron skin depth [17, 19] 

                                                                   pe
b

cr
ω

<<
2
1 .                                                              (38)   

Here, eepe mne22 4πω =  is the electron plasma frequency, ne=Zbnb is the electron density, and nb 

is the ion beam density. 

 However, it is also of considerable practical interest to investigate the effects of enhanced 

collective focusing in extended parameter regimes. In particular, it may be of great interest to 

utilize the collective focusing concept in the laser generation of a high-energy ion beam, where 

the energetic ions are produced and accelerated by the interaction of an intense laser beam pulse 

with a thin foil [30-31]. Along with the ions, a free-moving electron background is also 
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produced, and therefore it is appealing to utilize the collective focusing concept for collimation 

of the generated ion beam pulse [17]. However, in these applications the ion beam radius is 

typically larger than the collisionless electron skin depth, and therefore the condition in Eq. (38) 

is violated. Also, propagation of a neutralized (by co-moving electrons) ion beam along a strong 

solenoidal magnetic field with pee ω>Ω  can occur both in a heavy ion driver [6] and in the laser 

production of collimated ion beams [31] when a conventional (several Tesla) magnetic lens is 

used for ion beam focusing. 

 A detailed analysis of collective focusing for the cases where pee ω>Ω  or peb cr ω>  was 

performed in [17], by making use of reduced analytical models and advanced numerical 

simulations. In particular, it was demonstrated for the case where pee ω>Ω  that nonneutral 

compression corresponding to an excess of negative charge near the solenoidal axis can occur. 

For the case of strong nonneutral compression, with ibe nZn >>  near the beam axis, it has been 

shown that the electron beam radius decreases approximately as ceeR ω1∝ , where ωce is the 

local value of the electron cyclotron frequency. The radial electric field inside the electron beam, 

r<Re, is found to be linear with ( ) erzmE ceer 42ω−= , and the reduced self-consistent analytical 

model describing the nonlinearities in the radial electric for r>Re has been derived [17]. In 

addition, for the case where peb cr ω>  the perturbation in the solenoidal magnetic field produced 

by the azimuthal component of the electron beam current has been calculated self-consistently, 

and a significant suppression of the applied magnetic has been demonstrated. However, it is 

found that even for large values of cr pebω , the outer edge of the ion beam pulse can still 

experience efficient collective focusing [17]. 

 In conclusion, we comment on the “thermal” limits of the collective focusing arising 

from the quasi-adiabatic heating of the co-moving electrons [18, 20]. As the effective electron 

temperature increases during compression, the electron thermal pressure becomes more 

pronounced, and balances part of the magnetic electron focusing force. As a result, the radial 

electric field required to provide radial electron force balance decreases, vanishing to zero at the 

electron stagnation point where [18] 

                                                         4~ 22
esceees RmT ω .                                                               (39)     
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Here, Tes and Res are the effective electron temperature and the beam radius at the stagnation 

point. Assuming that the effective electron transverse emittance is approximately constant during 

the compression, i.e. esese TRTR 2
0

2
0 ~ , where Te0 and R0 denote the initial values of the effective 

electron temperature and the beam radius, the radius of the ion beam focal spot, Rbf, can be 

estimated as 

                                                    
41

2
0

2
04

~~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

cee

e
esbf m

TR
RR

ω
.                                                         (40) 

For example, for R0=1 cm, Te0=5 eV, and B0=1 kG the estimate in Eq. (40) gives Rbf ~1 mm. 

Finally, we note that the value of the electron temperature predicted in Eq. (39) along with quasi-

adiabaticity of the electron compression, i.e., esese TRTR 2
0

2
0 ~ , was observed (approximately) in 

the numerical simulations in [18]. 

 

B. Collective focusing lens for NDCX-II final focus.  

In this section we propose a conceptual design of the NDCX-II final focus section that 

demonstrates the feasibility of tight, collective final beam focusing. In the schematic shown in 

Fig. (5), an ion beam pulse passes through a final focus solenoid as it leaves the neutralized drift 

section (see Fig. 5). The beam is allowed to extract the electrons when leaving the plasma layer 

should the forces on them induce such motion, and is expected to be well-neutralized [17, 18, 32-

35]. In the idealized simulations presented here, the upstream effects of the radial and 

longitudinal beam convergence are not taken into account, and the following initial beam 

parameters are considered: the injected beam density is nb0=5×1010 cm-3; the directed energy of 

the beam ions is Eb=2 MeV; the ion beam radius is rb0=0.5 cm; the duration of the ion beam 

pulse is τ≈10 ns; and the transverse and longitudinal beam temperatures are assumed to be 

Tb=0.2 eV. To model the short downstream part of the neutralizing drift section, a plasma layer is 

placed between z=0 cm and z=12 cm. The plasma density is assumed to be uniform with 

np=4×1011 cm-3, and the electron and ion temperatures are taken to be Te0=Ti0=3 eV. Figure 6 

presents the initial illustrative results of the numerical particle-in-cell simulations performed 

using the LSP code [25], and demonstrating the feasibility of a tight collective focus for the case 

where the magnetic field inside the final focus solenoid is B0=900 G. The ion beam comes to a 

tight focus at zf~42 cm, with ~80 times increase in the beam number density, nf~4×1012 cm-3  
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[Fig. 6(a)]. The radial electric field inside the lens is shown in Fig. 6(b), and agrees well with the 

analytical predictions in Eq. (34). 

In conclusion, the collective final focusing scheme can be naturally utilized in the NDCX 

experiments, where a neutralizing co-moving electron background can be extracted from the 

neutralizing drift section, and then only a moderately weak magnetic lens (several hundred 

Gauss) is required for a tight beam focus. We emphasize again that the use of the collective 

scheme for the final beam focusing removes many of the challenges in operating a strong 

magnetic solenoid (several Tesla) and filling it with a background plasma. 

FIG. 5. Schematic of conceptual design of the NDCX-II final focus section used for the idealized 

numerical LSP simulations.  

 

FIG. 6. (Color online) Results of the numerical simulations performed with the cylindrical (r,z) 

electromagnetic version of  the LSP code for the idealized model of the NDCX-II final beam focus. 

Shown in the figure are: (a) Plot of the ion beam density at the focal plane corresponding to t=58 ns; and 

(b) Radial dependence of the radial electric field inside the lens corresponding to z=30 cm and t=45 ns 

(solid blue line). The analytical results in Eq. (34) are shown by the pink dashed line in Frame (b). 
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IV. PLASMA INDUCED SELF-FOCUSING VERSUS COLLECTIVE FOCUSING LENS  

It is of considerable interest to compare the focusing effect of a collective focusing lens 

(Sec. III) to the enhanced self-focusing of an ion beam propagating through a background 

neutralizing plasma along a solenoidal magnetic field (Sec. II). For both cases, the enhanced 

focusing is provided by a strong radial self-electric field, which is produced to balance the 

magnetic BV×  force acting on the rotating neutralizing electrons. Note, however, that for the 

case of a collective focusing lens, a rotation of the co-moving electrons is acquired due to 

variations of the applied solenoidal magnetic field, from zero outside the lens to the maximum 

value inside the lens. In contrast, for the case of plasma-induced self-focusing, the background 

plasma electrons are initially immersed in an applied magnetic field, and variations of the 

magnetic flux that determines the electron rotation are associated with a small radial 

displacement of the electron orbits in the presence of the ion beam self-fields. For this reason, 

plasma-induced enhanced self-focusing can occur even for the case of a uniform applied 

magnetic field. In contrast, in order for the enhanced focusing to occur inside a collective 

focusing lens, the neutralized beam has to traverse the fall-off region of a solenoidal field. 

Moreover, note that the value of the plasma-induced self-focusing force [Eq. (7)] does not 

depend on the local value of the applied magnetic field. The value of the applied magnetic field 

however determines the conditions for the enhanced self-focusing to occur [see Eqs. (1) and (6)]. 

Finally, the important feature of the collective focusing lens is that it provides a linear (in radius) 

focusing force for the case of quasi-neutral compression. In contrast, the plasma-induced self-

focusing force is proportional to the beam density gradient, Fsf~∂nb/∂r, and therefore its radial 

profile can be strongly non-linear. However, note that this feature of the self-focusing force can 

be of particular importance for ion beam self-pinch transport applications, where the defocusing 

effects provided by the ion beam thermal pressure have to be compensated.  

The ratio of the focusing force acting on the beam ions inside a collective focusing lens, 

Fcoll, to the plasma-induced self-focusing force in the presence of an applied magnetic field, Fsf, 

can be estimated as 

2

22

4
1~

b

eb

sf

coll

V
r

F
F Ω .                                                                   (41) 

In obtaining the estimate in Eq. (41), it has been assumed that brr 1~∂∂ and pbb nnZ ~  in the 

expression for the plasma-induced self-focusing force [Eq. (7)]. It is interesting to note that in the 
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limit where the beam radius is the order of ebb Vr Ω~  , which correspond to the threshold value 

in the condition in Eq. (6) for pee ω<<Ω , the effects become of the same order, i.e., Fcoll~Fsf.  

Finally, we comment on the significant suppression of the total focusing effect that has 

been observed in the experiments in Ref. [21] when a neutralizing plasma was produced inside a 

collective focusing lens. Although enhanced plasma-induced self-focusing could still occur 

inside the magnetic lens due to the presence of the background plasma, its influence on the ion 

beam dynamics would be much less than the original effects of the collective focusing lens. 

Indeed, a simple calculation shows that for the parameters of the experiments in [21], where a 

360 keV proton beam with rb≈2cm passes through a collective lens with B0~1kG, the effective 

electron gyroradius is small, rge=Vb/ωce≈0.05 cm, and the ratio in Eq. (41) is much greater than 

unity, Fcoll/Fsf ≈428. However, note that for the design parameters of a heavy-ion fusion driver, 

where the beam energy can correspond to βb~0.6 [36], both focusing effects generated in an 

applied magnetic field of ~1kG become comparable for rb~1 cm.   

 

V. CONLCLUSIONS     

In the present paper we considered two schemes for intense ion beam focusing, which 

utilize the collective dynamics of plasma electrons. In the first approach, the ion beam 

propagates through a neutralizing background plasma along a uniform magnetic field (enhanced 

plasma-induced self-focusing). In the second approach, the ion beam passes through a finite size 

plasma, extracts neutralizing electrons from the plasma, and then enters a magnetic lens 

(collective focusing lens). Note that for this focusing scheme to work, the beam has to extract the 

neutralizing electrons from a region of a zero magnetic field, and no background plasma or 

secondary electrons should be present inside the lens. In both cases, a strong radial electric field 

is produced due to the collective electron dynamics. This self-electric field provides the 

enhanced transverse focusing of the beam ions. Detailed analytical and advanced numerical 

studies using particle-in-cell simulations were performed for both approaches and their 

application for the beam focusing in the Neutralized Drift Compression Experiments (NDCX-I 

and NDCX-II) were discussed.  

In particular, a detailed discussion of the enhanced plasma-induced self-focusing 

including the approximate analytical derivation of the focusing force and its verification in the 

advanced numerical simulations were presented. In addition, an analytical solution describing the 
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self-consistent evolution of the transverse beam envelope during self-focusing was obtained for 

the case of a parabolic radial beam density profile. Also, the thermal effects of the background 

plasma electrons were investigated. It was shown that the radial electric field, which provides 

most of the self-focusing force, significantly decreases when the electron temperature becomes 

comparable to ( ) 12222 1~ −
+ bpebbee rVVmT ω . Finally, it was shown that the effect of enhanced self-

focusing can be recovered within the electrostatic approximation.  

We also reviewed the concept of the collective focusing lens, including an extension of 

the original analysis to the regime of non-neutral compression corresponding to ωce>ωpe, and the 

regime where pronounced perturbations of the applied magnetic field can occur (corresponding 

to rb>ωpe/c). In addition, we proposed a conceptual design of the NDCX-II final focus section, 

for which the feasibility of tight, collective final beam focusing was demonstrated in the 

advanced numerical simulations described in this paper.  
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